31. Studies on the Anoplura and Mallophaga, being a Report upon a Collection from the Mammals and Birds in the Society's Gardens.-Part II.*' By Bruce F. Cummings, British Museum (Natural History) \dagger.
[Received August 4, 1916: Read November 2I, 1916.]
(Text-figures 1-36.)

	Index.
Ststematic:	Page
Anatreus, gen. n 6 ¢ธ3
A. difficilis, sp. n.	654, 6
Neophilopterus, gen. 1.	66
Ibidocus, gen. n.	663
I. flavus, sp. n.	663
Dollabella, gen. n	675
Struthiolipeurus, gen. 11	679

Structure.

Snodgrass (1), in 1899, pointed out certain broad features of divergence in the internal anatomy among the larger divisions of the Mallophaga, such as the Amblycera, the Ischnocera, and the family Trichodectidæ. Recently, Harrison (2) has claimed the existence of a large accessory sac of unknown function in comexion with the male reproductive organs as the chief and most reliable character for separating the family Boäpidæ from all other Mallophaga. In 1910 Mjöberg's sketches of the male reproductive system in several Mallophaga (6) offered the systematist an inducement to compare such organs as the vesicula seminalis, the ductus ejaculatorius, and the spermatheca, in order to discover the extent of their divergences in different species and genera. In the following paper some evidence on this sulject is brought forward. So far from there being a monotonous uniformity in these internal organs, the differences are such as no student of these little parasites can afford to neglect. The ultimate systematic value of such characters can only be estimated after many more dissections ; but whether it be great or small, the considerable difference in the form of the vesicula between the two Owl Philopteri-Philopterus ceblebrachys and P. cursor,-to take an example, is one which cannot be satisfactorily ignored and which conveniently falls within the province of the systematic writer to record.

Methods.

All chitinous parts were studied after hot caustic potash had cleared away the soft parts. For an examination of the soft

[^0]parts, fresh material was not available ; but it was found that good results may be obtained with well-preserved spirit material if the specimens be plunged for a few minutes in canstic potash, to destroy the connective tissne, and then soaked for twelve hours in glacial acetic acid, transferred to absolute alcohol, dissected in oil of cloves, and mounterl in Canada balsam.

For sectioning, the specimens had been fixed in Carnoy's solution (Formula No. II.), which proved, however, to be not very satisfactory. For imbedding, Awati's methods, detailed in the P. Z.S. for 1914 (p. 686), were followed, the sections being stained in the ordinary way with Ehrlich's Hrematoxylin, Eosin, or Orange G. I am much indebted to Mr. C. A. Gunns for assistance in section-cutting.
[In none of the figures which follow of the male reproductive system and copulatory apparatus are the muscles shown, and in some the exact position of the entry of the vas deferens into the ductus is not given because, as a rule, in most of the dissections this could only be made out with the greatest difficulty on account of the delicacy of the vas deferens.]

Family Philopteride.

The Owl Phllopteri.

Piaget (3) grouped the Owl Philopteri together, under the general name "Strigicole." For convenience, this plan may still be followed. But these Owl parasites cannot very easily be separated off as generically distinct from the Philopteri of Birds of Prey, with which they show certain affinities. Within themselves they fall into three distinct types, as pointed out by Prof. V. L. Kellogg (4), represented by the following three species:- P. rostratus Nitzsch, P. ceblebrachys Nitzsch, and P. cursor Nitzsch.

The following four species were included in the collection :-
Philopterus rostratus Nitzsch (5, p. 76).
4 ㅇ $ㅇ$, from the Barn-Owl, Flammea flammea (Linn.) *.
Dissections were made from male material kindly handed over to me by Mr. Waterston.

Philopterus cursor Nitzsch (5, p. 75).
Several specimens of both sexes, from Bubo maculosus (Vieill.) (S. Africa) and B. ascalaphus (Savign.) (Egypt). P. cursor has been further recorded from B. capensis Smith, B. virginianus (Gmel.), Asio accipitrinus, A. wilsonianus (Less.), and A. galapagensis (Gould).

[^1]Philopterus ceblebrachys Nitzsch (5, p. 77).
Many examples, male and female, from Nyctea nyctea (Linn.) and Strix aluco Linn. This very distinct round-headed species has been reported also from Nyctala tengmalmi (Gmel.), Surria ulula (Linn.), and others.

Philopterus athene Mjöberg (6, p. 115).
Many examples of both sexes, from Athene noctua (Scop.) (Cairo). Mjöberg's specimens came from Athene glaunc (Savign.). The British Museum possesses specimens presented by the Hon. N. C. Rothschild, and taken on an unidentified Owl in Abyssinia.

Male Reproductive System of Owl Philopteri.

Of the three species dissected-P. cursor, P. ceblebrachys, and P. athene, the vesicule of P. cursor and P. athene are somewhat alike, while that of P. ceblebrachys differs strongly from both :-

Philopterus cursor (text-fig. 1).-There are the usial two
Text-figure 1.

Philopterus cursor. Male reproductive system and copnlatory apparatus. $\times 100$.
T. testis. VD. vas deferens. $V S$. vesicula seminalis. D. ductus. $B P$. basal plate. a. transverse piece. P. paramere. $E P$. endomeral plate.
pairs of testes, large pear-shaped organs, the round ends approximated and united by a commissure. The resicula seminalis in a Philopterus of the cursor type, perhaps P. mudipes P. from Asio sp., is a large oval organ of much the same form
as that figured by Snorlgrass (1, pl. xiii. figs. 7, 8, \& 9) for Colpocephatum flavescens and Eurymetopus taurus. In P. cursor, on account of the swelling out and rounding of the two separate sacs of which the vesicula is composed, it approximates to the form of the resicula in P. ceblebrachys (text-fig. 2). Note the relatively small size.

Philopterus ceblebrachys (text-fig. 2). -In outline the vesicula

Text-figure 2.

Philopterus ceblebrachys. Male reproductive system and copulatory apparatus. $\times 100$.
T. testis. VS. Vesicula seminalis. $V D$. vas deferens. D. ductus. BP. basal plate. $F R$. forked rod. a. transverse piece. P. paramere, $E P$. endomeral plate.
resembies Ninerva's helmet. In between the rounded posterior " horns," which sweep backwards and ontwards, the ductus enters and swells out at once into an oval form.

Male Copulatory Apparatus of the Owl Plitopteri.
Philopterus rostratus (text-fig, 3).-Distinguished by the unusually long parameres in propertion to the basal plate, a
feature which separates the species from all other Owl Philopteri so far examined. Basal plate: Rather short, broad; lateral margins strongly chitinised along posterior half. The hind margin juts out medially into a prominence beneath the endomeral plate. Parameres: Elongate rounded rods, graduated to a slender distal end, and slightly curving inwards towards one another. Endomercal plate: Quadrilateral, as broad as the basal plate to which it is attached, and about half the length of the parameres. The endomeral plate has a marginal band which

Text-figure 3.

Philopterus rostratus. Male copulatory apparatus. $\times 200$. $B P$. basal plate. $F R$. forked rod. $E P$. endomeral plate. P. paramere.
along the lower side deepens considerably in the middle part, where it bends upwards between the parameres and sends backwards across the plate two diverging splints. Each of these runs half way along the oblique base-line of the articular surface of the paramere. The forked rod (see text-fig. 1) is homologous with similar parts in P. cursor, P. ceblebrachys, and P. athene (see text-figs. 1-3).

Philopterus cursor (text-fig. 1).-Basal plate: Compared with parameres this is very long indeed, fairly broad, the lateral margins divergent from in front posteriorly. Parameres: Short, iuwardly curved, flattened, with acute tips. Endomeral plate: This runs out between the parameres into a broad rounded apex. There is a median longitudinal groove and a transverse groove cutting the former at half way, dividing the plate in to four sections of the shape seen in the figure. Under a high power there are visible on these areas eight white spots, probably representing the al veoli of minute sensory hairs. There are three of these in each posterior area and one in each anterior area. The forked rod is thinly chitinized, but recognizable. The two small nodular swellings at " a " are ridged and densely chitinised, and may be homologous with the parts similarly lettered in P. ceblebrochys and in P. asturinus with the penis.

Philopterus ceblebrachys (text-fig. 2).-Basal plate: About four times as long as the parameres. The posterior half is broader than the anterior half, and possesses strongly chitinised, parallel, lateral margins. Parameres: Quite short, stout, slightly incurved. Endomeral plate: Broad behind, nearly as long as parameres. Posterior lateral angles rounded. A narrow band runs along posterior margin. Lateral margins straight, convergent anteriorly. Anterior margin short, straight, each anterior lateral angle produced into an outwardly curved process. Forked rod well developed, the handle of the fork incompletely fused, indicating its originally double nature. The transverse piece is homologous with the part similarly shaped in P. athene.

Philopterus athene.-This resembles the apparatus of P. ceblebrachys. In length of the head this species recalls P. rostratus; in the form of the vesicula seminalis it approximates to P.cursor, but the vesicula of P. rostratus I have not yet been able to examine. Basal plate and Parameres: As in P. ceblebrachys. Eudomeral plate: As in P. ceblebrachys, except for the concave posterior margin. "Forked rod": Represented by two rods converging posteriorly. The transverse piece: This is obviously homologous with the part so named in P. ceblebrachys, but each half is concave and not straight.

The Mouth-parts of Philopterus ceblebrachys.-Lyriform organ: Anterior cornua short and broad; posterior cornua absent. Labium: A labial sclerite is present, as in Trichodectes gastrodes Cummings (7, p. 99) and in Goniodes falcicomis Nitzsch (Part I. p. 287) ; its posterior cornu on each side curves outwards and stops at the base of the "paraglossa"; the transverse bar is short and situated far forward, near the front margin of the labium ; anterior cornua absent.

The Receptaculum seminis.

Philopterus ceblebrachys (text-fig. 4).-Piaget (3, p. 30), in describing this species, says:--"A la face ventrale deux bandes longitudinales sur les côtés de la valvule qui est peu visible, et deux taches arquées dos à dos, avec un petit cercle de chitine en avant." As Mjöberg points out (6, p. 256), this " petit cercle de chitine," figured by Piaget in several species, is not a superficial character of the exoskeleton, but a part of the receptaculum seminis strongly chitinised and showing through the integument. The receptaculum consists of a small more or less circular sac of soft delicate tissue carried by a dark-brown thickly-chitinised calys at the end of a fine duct leading into the genital chamber.

Text-figure 4.

Philopterus ceblebrachys. Receptaculum seminis, $\times 10 \mathrm{C}$.
S. sac. C. calyx. D. duct.

Mjöberg calls this a "kreiss'mule Chitinscheibe," and figures it in Nirmus lineolatus just as if it, indeed, were a flat circular dise on one side of the base of the sac. In P. ceblebrachys the calyx is a saucer-shaped piece of chitin with a rim. The duct enters through the centre of its membranous bottom and debouches at the tip of a large chitinous cone, which overtops the side of the calyx and at its base is continuous with the calyx, so that in optical section it looks as if the bottom has been pushed clean through the centre.

In an Owl Philopterus of the cursor type, from Asio otus, the calysx differs from that in the preceding in several respects. The outer surface is closely striated in a more or less longitudinal direction, the constriction below the rim is deeper, and the "cone" is parallel-sided at its upper end and has a truncate broad top.

Proc. Zool. Soc.-1916, No. XLV.

The text-figmre should be compared with those of Ibidocus and Neophilopterus (p.672). Relatively, the caly.x in the Philopterus species is much wider across and shallower, and the chitin is of an entirely different consistency, being dark brown, rather thin, but very firm.

The Philopteri of Birds of Prey.

Future research may bring the Philopteri of the Owls and the Birds of Prey into closer relationship--a result which, according to modern views on the classification of birds, would lend no support to the theory that the phylogeny of total obligate

Text-figure 5.

Philopterus asturinus. Male reproductive system and copulatory apparatus.

1. ventral, $\times 100 ; 2$. dorsal, $\times 150$.
T. testis. VS. vesicula seminalis, $V D$. vas deferens. $B P$. basal plate. D. ductus. P. paramere. $E P$. endomeral plate. Pen. penis.
parasites like Anoplura and Mallophaga will assist in the unravelling of the phylogeny of their hosts, as ornithologists present a solid front against the old position of the Owls among the Birds of Prey. Between the two groups there is a strong likeness, for example, in the male copulatory apparatus.

Philopterus platystomus Nitzsch (5, p. 69).
Females and larve from Buteo erythronotus (King) (Argentine),

Philoprerus pictus Giebel (5, p. 68).
1 ơ \& 1 ㅇ from Aquila chrysaëtos (Lim.).
Philopterus asturinus Mjöberg (6, p. 112).
Males and females rather plentifully from the Goshawk (Astur palumbarius (Linn.)).

This species comes close to Denny's type-specimens of P. nisi from Accipiter nisus (Linn.), which Piaget-I do not know with how much reason--synonymises with P. gonorkynchus.

Text-figure 6.

Philopterus asturinus. Alimentary canal. $\times 70$.
O. cesophagus. C. cecum. Cr. crop. \quad. ventriculus. R. rectal glands.
Male Reproductive System and C'opulatory Apparatus (text-fig. 5). --Testes and vas deferens as usual. The vesicula seminalis is a little elongate, of the shape given in the figure. Basal plate: Short and broad, lateral mavgins well chitinised along whole length, slightly convergent in front. Parameres: Short, stout, curved, very much as in the Owl Philopteri (except P. rostratus). Mesosome : Ventrally, running out from the posterior margin of
basal plate, is a short stout penis-like tube formed of two distinct longitulinal halves. Each half is densely chitinised and dark brown in colour, and at the base spreads out towards the base of the paramere. This tube is perhaps homologous with the transverse piece of P. ceblebrachys and other Owl Philopteri (see text-figs. 1 \& 2). The endomeral plate corresponding with the same piece in the Owl Philopteri overlies the rest of the mesosome :und brilges across from the base of one paramere to the other: The dustus ejaculatorius rims in under the bridge. The endomeral plate may either consist of two pieces superimposed upon one another--viz., the deeply bifid band marked in the text-figure and the plate above this stretching across from paramere to parmmere; or these parts may only be sculpturing or local thickenings in the same plate of chitin.

Alimentary Canal (text-fig. 6). -This belongs to the common Ischnoceran type figured by Snodgrass (1, pl. xi. fig. 11). But the crop is longer and narrow, and in the ventriculus immediately behind the two anterior ceca there is a deep constriction, below which the ventriculus is broad and spacions.

I'me Philopteri of Ducks, Geese, and Swans.

This interesting group of Mallophaga was first seriously tackled ly Giebel in the 'Insecta Epizon,' 1874 (5, pp. 113-116), in which eight distinct species are described, including the typical Philopterus icterodes. Denny (8, pp. $95 \& 99$) described two other-species- P. cygni fiom Cygnus bewicki Yarr. and P. chrysophthalmi from Gilaucion clanguta (Linn.) (Clangata chrysophthatmi). By reference to Denny's collection, now in the British Musenm, his "D. clarysophthalmi" proves to be an Accipitrine parasite, probably P. pictus, a straggler perhaps upon the Golden-eye Duck; or Demny may have missead m coufuserl his label, mistaking "Golden-eye" for. "Golden Eagle." Gietei remaris, of the form figmed and described by Demny unter the name " Di. icterocies," that "seine Abbildung giebt so erhebicue Differenzen an, dass man gerechte Zweifel an der Identität erheben könnte." I have examined Demny's speamens, and find, as Giebel suspected, that Demey did not have P. icterodes before him. His specimens belong to the form which, until the types of Giebel and Nitzsch can be re-examined, I propose to identify with Giebel's P. ferrugineus. Piaget (3, pp. 113-116) was imperfectly acquainted with these Duck parasites. He describes and figures true P. icterodes, I think correctly, although the sketch of the terminal segments of the abdomen of the male ($\mathrm{pl} . \mathrm{x}$. fig. 1 a) appears to show the remarkable structure on the endomeral plate described below and called the effractor, which is present in P. ferrugineus but absent in P. icterodes. Piaget did not know any of Giebel's species, and subsequent authors have labelled all Philopteri from Gicese and Ducks P^{\prime}. icterodes.

Through the generosity of Mr. Waterston I have been able to prepare, dissect, and mount a considerable number of Philopteri of this group from a variety of hosts, the following distinct species emerging as a result:-Philopterus cygni D. (on Swans), P. Urunneiceps G. (on Geese), P. icterodes N. (on different species of Ducks), P. ferrugineus G. (on Ducks), P. obtusus G. (on Somateria mollissima (Linn.)), and a species taken on the Pochard, which I cannot name satisfactorily and must therefore regard as new.

The whole group, for which the new genus Anutocus is proposed, is a remarkably compact one, and the species comprised in it are all closely related and sometimes with difficulty differentiated one from another ; so that Gitbel's specific diagnoses are of little assistance, even for the parposes of identification. Further, as straggling occurs so frequently from Duck to Duck, it is unsafe to rely for help upon the host's name.

The above identifications, therefore, must be accepted with reserve. Rather than give new names, it has appeared better to perpetuate the old where that was possible, at the same time figuring the parts important for the differentiation of the species. In the future, should the types of Giebel and of Nitzsch become accessible, these decisions can be revised if necessary.

Anatgeus, gen. nov.

Head distinguished by the characteristic alation of the clypeus, by the presence of two small peg-like spines dorsally (one on each side of the posterior apex of the signatural plate *), by the unusually short antenne, and the modified lyriform organ. Abdomen characterised by the form of the lateral tergites, which in segment 1 meet each other in the middle line. In sulsequent sections, except the last, the tergites leave an uncovered median field. In the male copulatory apparatus, the fusion of the parameres distally with the pseudopenis, the form of the latter, the endomeral plate, and sac are also good generic characters. Finally, the form of the vesicula seminalis and the extremely short ductus must be included.

Small ectoparasites, infesting Swans, Geese, and Ducks.
A gemus indicating in the male genitalia certain Lipeuroid affinities, and in the mouth-parts obvions affinities with the genus Ibidocus, nor.

Genotype: Anatcents icterodes Nitzsch.
The six species distinguished up to the present (no doubt others remain to be elucidated) fall into two groups, according as the effractor-a remarkable structure shaped like a tin-opener--is present or absent on the endomeral plate of the male. A. Those with the "tin-opener" are A. ferrugineus and A. obtusus. B. Those without it are A. cygmi, A. icterodes, A. brunneiceps, and A. difficilis, sp. n.

[^2]In the same gemus should be inchuded Docophorus brunneopygus Mjöberg (6, 1. 130) on Anser leucopsis, which I do not know.
A. difficilis, sp. n., closely resembles A. ferrugineus in form, with the one considerable difference that the "tin-opener" is absent.

Text-figure 7.

T'ext-figure 8.

A. Anatocus obtusus, ठ. B. A. brumneiceps, ठ. $\times 80$. Compare the signatures.

Text-figs. 7,8 , \& 9 illustrate the form of the head in these species, and the table presents a comparison of the head-measurements (millimetre scale). In the table the measurements taken are from the posterior apex of the signature to the anterior margin, and transversely from one lateral margin to the other at the level of the base of the clypeal bands, together with the total length and the greatest breadth.

Text-figure 9.

Anatoecus cygni, ठ. $\times 80$.
Head-measurements (millimetre scale) of Males of Anatoecus species.

	Group A.		Group B.		
	A. ferrugineus.	A. obtusus.	A. cygni.	A. icterodes.	A. brunneiceps.
	1. 2. 3.	1. 2. 3.	1. 2.	1. 2.	1. 2.
Breadth	$\cdot 40 \cdot 41 \cdot 40$	$\cdot 46 \cdot 46 \cdot 45$	$\cdot 49$-50	$\cdot 38 \quad 38$	$\cdot 42 \cdot 40$
Breadth in front	$\cdot 20 \cdot 20 \cdot 19$	$\cdot 25 \cdot 24 \cdot 25$	-22 -20	-22 -23	-18 -20
Length	$\cdot 41 \cdot 43 \cdot 40$	$\cdot 46 \cdot 45 \cdot 45$	$\cdot 41 \quad 40$	$\cdot 41 \cdot 41$	-43 - 41
Length in front .	$\cdot 19 \cdot 19 \cdot 19$	$\cdot 18 \cdot 16 \cdot 17$	$\cdot 10 \cdot 10$	-16 -16	-14. 14

In addition to the differences in the form of the head, in the cephalic index, and in the male copulatory apparatus, small specific characters may also be seen in the colour (rather variable, however), in the shape of the abdomen, and the genital mark in the male.
The Society's Collection contained two or three specimens of the typical A. icterodes.

Anatercus icterodes Nitzsch. From Aex galericulata (Lim.).
The Mouth-parts. (Text-fig. 10.)
Mandible's.-In A. cygni and A. icterodes, and probably throughout the genus, the narrow basal process of the left and the quadrangular process at the base of the right mandible are absent, the shape of the mandibles being accordingly different.

These processes occur and have been described in many species of Mallophaga, hoth Amblycera and Ischnocera (see Part J. and some of Kellogg's figures, Proc. C'al. Acad. Sci. vol. vi., 1896). I find them absent not only in Anatocus, but in the genus Ibidoccus, nov. (see p. 664) and in Boöpia tarsata-probably absent in other Boöpidæe as well.

The lyriform organ and "glands " are modified throughont the genus, and resemble those of Ibidocus figured on p. 670. The text-figure shows their typical form.
A. icterodes.-Both mandibles are very similar, the right differing from the left in the acuteness of the apices of its two branches. In the right there is a minnte protuberance subapically on the ventral branch and another lower down on the cutting-edge. There are a few transverse ridges distally on the

Text-figure 10 .

Anatocous ïetonorles. Month-parts. $\times 400$. Maxillary lobes not shown.
\dot{R}. right, and L. left mandibles. P. "paraglossa." $A C$. anterior cornu, and $P C$. posterior cornu of lyriform organ. G. "gland."
dorsal surface of the dorsal branch and a V-shaped groove, the lower margin of which curves inwards and then downwards, showing a notch in its margin just before the latter slopes inwards in a straight line. Labium: This has clearly demarcated lateral margins, formed of stronger chitin than the immediately smromding area. "Paraglosse" short, with long terminal spines. Inner pair of lobes well defined. Isopogometric apparatus: 'The two sprawling posterior cornua of the lyriform organ run in a dorsal direction, one on each side of the pharynx. The anterior cornua are two short broad processes, rounded in flont. The lyriform organ is small and thinly
chitinised, invisible without dissection. The basal pieces (or "glands") are small circular areas, each framed in a chitinous plate which goes forward to the labial margin as anterior hypopharynx. Posteriorly are attached the usual narrow tendons, one to each "gland." "Ducts" or chitinous chords apparently absent.
A. cygni.-In the form of the mandibles, lyriform organ, basal pieces, anterior hypopharynx, and in the absence of ducts this species agrees closely with the preceding, and I am unable to find any obvious differences. The mandibles are perhaps more powerful.

Text-figure 11.

$B P$. basal plate. R. retinacular comb. EP. endomeral plate. P. paramere. Ps.P. pseudopenis. E. effractor. 1a. side view of effractor. The small sac cannot be shown.

The Male Copulatory Apparatus in the Genus Anatæcus. (Text-figs. 11 \& 12.)
Group A. Those with the effractor.
A. ferrugineus.-Busal plate: Longer than broad, with a rather deep and broad V-shaped white mark debouching on the anterior margin, looking like a split, the result of an accident in dissection ;
it is present in all the species except A. cyyni. The plate and parameres are fused in one piece, there being no articulation and no trace even of a suture. Parameres: Distally these appendages bend in to meet one another and embace the median psendopenis, which is probably endomeral. The parameres are fused with the base of the psendopenis, but not with one another, the tips being quite discrete. Parameres and pseudopenis lie dorsally and curve upwards at the end. Below, in the mesosomal space, is the sac-an interesting structure, slightly expansible (in copulation), and carrying dorsally at its distal end a great number of minute finger-shaped papillæ. Behind these are seen numbers of minnte circular spines. On its ventral surface in the hypomeral area is a remarkable retinacular apparatus, consisting of a semicircular row (with the apices pointing backwards) of ten elongate powerfuil teeth, those in the middle as long as the pseudopenis; it is uncertain whether this comb of teeth can be moved forward or not. Below the sac is the endomeral plate, which, like the parameres; is continuous with the basal plate. Fixed upon the posterior margin dorsally is the densely chitinised effiactor. It is a little, more or less oval piece of dark-brown shiny chitin, rumning out into two limhs behind-a dorsal and a ventral, the one immerliately above the other. The ventral limb is blunt at its tip, the dorsal more acute, the two together recalling a tin-opener without the handle.
A. obtusus.-Very similar to the apparatus of the preceding species, so that it is sufficient to signal the differences. The basal plate is different in shape in the neighbourhood of the effractor ; the teeth of the retinacular combare shorter and more numerous, being fifteen or sixteen or more in number; and, lastly, the effractor has a different shape, being distinguished by the narrower and more elongate dorsal limb, which is set in the ventral process of pyriform outline as in a sort of pedestal.

Group B. Those without the effractor. Correlated with its complete absence, is the complete absence of the retinacular comb.
A. cygni.-Basal plate: Short and broad, posterior V-sliaped mark absent. Parameres: Broad at the base, at the apex blunt and fused closely with the psendopenis, which is quite short. Two minute white circles on the posterior margin of the endomeral plate-probably the relatively large alveoli of minute sensory hairs.
A. icterodes.-Basal plate: Short and broad; the V-shaped mark present. Parameres: Longer than the basal plate, and enclosing a space of different shape from that of A. brummeiceps, with which it must be compared.
A. brumueiceps.-In this species the apparatus, very similar to
the preceding, is nevertheless characterised by the possession of an elongate, thin, chitinous splint lying dorsally on the sac and projecting a little beyond it. This probably is the penis, and is particularly easy to see in some specimens from Somateria mollissima*.
A. difficilis, sp.n.-The penis-splint is present. The apparatus appears to me to be quite indistinguishable from the preceding.

Text-figure 12.

Anatocus icterodes. Male reproductire system and copulatory apparatus, $\times 160$.
$I S$. vesicula seminalis. D. ductus. BP. basal plate. EP. endomeral plate. P. paramere. Ps.P. pseudopenis. T. testis. TD. vas deferens. Sac not shown.

Male Reproductive System in Anatocus. ('Iext-fig. 12.)
This was examined in A. icterodes and A. brumneiceps and found to be the same. It is noteworthy for the extremely

[^3]short ejaculatory duct, the large testes, and the cmions locular character of the resicula seminalis, which, as usual, consists of a right and a left ventricle fused into an organ of the shape seen in the text-figure.

The Philopteri of Storks and Ibises.

Two new genera are diagnosed below--the one represented by Philopterus tricolor N. and found upon the Ciconiidæ, and the other represented by P. platalee D. and found upon the Ibididr. These two genera stand fairly close to one another. Ibidocus, gen. nov., contains the species designated "Bisignati" by Piaget and characterised by the large double signature; Neophilopterus, gen. nov., contains the forms which Piaget collected under the heading "Setosi," and is characterised by the fusion of the double signature into one plate. Other well-defined characters are recounted under the respective diagnoses of these two genera.

Neophilopterus, gen. nov.

Head, especially in the female, relatively small ; on the dorsal surface of the pre-antennal area, a transverse suture marks the posterior margin of the signature. In the new genus Ibidocus each element of the double signature ends behind in an acute angle. In the present genus two acnte angles are present posteriorly, suggesting fusion of an originally double plate *. Each of these posterior angles is situated more laterally than in Ibidxcus, and the plate on each side extends further, so as to overlie the clypeal band so prominent in Ibidocus. By focussing down, the clypeal band is seen crossing the suture and thus uniting the clypeal region with the skull (as in other Philopteri). Thorax longer than broad, with a strong, transverse, acetabular bar running in from each side between the first and second pairs of legs and giving attachment to the former. Clavicles present. Abromen with two transverse rows of silky hairs on the tergum of each segment. Two tergites on each segment situaterl laterally and leaving a bare median field except in the terminal segment, where they meet across the middle. The male copulatory apparatus is also fairly characteristic, and may probably pove diagnostic for the whole genus.

Genotype: V. tricolor Nitzsch (5, p. 96).
Parasites of the Ciconiidæ.
The following good species can with certainty be referred to this genus :-N. tricolor N., N. indicus P., N. incompletus N., λ^{r}. unifasciatus P., and $\lambda^{\text {r }}$. episcopi Kellogg.

Neophilopteruts incompletes Nitzsch (5, p. 97).
This is the only member of the new genus included in the

* I hare no evidence to show that Neophitopterus is a derivative of Iliducus. Evolution, therefore, may have gone the other way.
collection. It was represented by many specimens fiom Euxenura maguari (Gmel.).

Giebel described a Neophilopterus from this same host, calling it N. subincompletus. But to this species, so far as it is possible to understand it from Giebel's description, the present specimens do not belong.

Male Reproductive System (text-fig. 13).-TTestes pyriform as usual. The ductus is short, there being only two bends in it fiom the mesosome to the vesicula. The vesicula seminalis is elongate, nar ow, with a longitudinal median groove indicating the double origin of this organ. The ductus, on leaving it, bends backwards for a little way, and for this portion of its length the duct is a fairly narrow canal. On turning forwards again after the second bend, it expands into a large canal quite

Text-figure 13.

Nenphilopterus incompletus. Male reproductive system and copulatory apparatus. $\times 100$.
IS. vesicula seminalis. D. ductus. E.A. ejaculatory ampulla. $B P$. basal plate. E. endomere. Pear. penis. P. paramere. T. testis. VD. vas deferens.
as broad and long as the vesicula itself, and no doubt functioning as an ejaculatory ampulla, as its walls are well supplied with trausverse muscle-fibres, which run in from opposite, sides and appear to become plaited together in the middle.

Male Copulatory A pparatus (text-fig. 13).-Busal plate: Longerthan the parameres, broader behind than in front, posterior margin very convex. Each lateral margin has a broad band. Between
these lateral bands the median area of the plate is trongh-shaped. Just behind the mesosome lies a small median plate, which sends off a branch on each side behind into each lateral region of the basal plate. Parameres: Quite evenly rounded rods, tapering somewhat towards the distal end and curving slightly inwards. Mesosome : Fused into one piece, shaped as in text-fig. 16. Halfway down on each side, projecting in a forward direction, is

Text-figure 14.

Neophilopterus tricolor. Male copulatory apparatus. $\times 140$. $B P$. basal plate. LE. lower endomere. E. endomere. P. paramere. Per. penis.
a strong bristle set in a well-marked alveolus. These two bristles mark the end of the endomeral portion of the mesosome; between it and the distal half or telomeral portion a distinct suture can be observed. In the dissection of a new species of the genus collected on C'arplibis spinicollis (Jameson) the endomeral
or proximal half of the mesosome is large; the two forwardlydirected spines are present, one on each side at its posterior end; while the distal or telomeral half, strongly chitinised, is telescoped up within the endomeral. Similarly with another new species from Abdimia cabdimii (Licht.).

Comparison with the Apparatus of Neophilopterus tricolor (text-fig. 14).-This apparatus, while resembling the preceding in its basal plate and parameres, differs from each of the three forms mentioned above in features of the mesosome and in the presence of a small process or plate at the base of the mesosome which I regard as an upper endomeral chitinisation. The part marked Pen., apparently telomeral, is white and more or less membranous, and appears to be held by the basal endomeral portion shaped something like a pair of pincers.

The Receptaculum Seminis of the Female of N. incompletus (text-fig. 21 (3), p. 672).-This should be compared with the receptaculum of Ibidrecus (text-fig. 21 (1 \& 2)). From a minute opening into the genital cavity, a delicate narrow duct runs up to a large semicircular sac borne upon a short circular calyx, brown in colour, with its rounded outer surface longitudinally striate.

Mouth-parts of N. tricolor and N. incompletus.-It is worthy of record that, while the lyriform organ and basal pieces of $I^{\text {. incompletus are normal, in }} V$. tricolor the same parts are greatly modified. The lyriform organ resembles that of Ibidcecus platalece. Reference to the isolated modification of the isopogometric apparatus in species of certain genera is referred to in Part I. of this paper (p.273), and is again discussed further on, where the genus Ibidrecus is discussed.

Ibidecus, gen. nov.

Head with a double signature, consisting of two oblong plates, each plate usually with a small embossed area on the posterior end, which runs out into an angle. Clypeal bands very well marked; behind, they pass beneath each signatural plate and inwards to be attached to the skull. Antenne long, with an especially long second segment. Abdomen large, broad, with a lateral tergite on each side of each segment, so as to leave a clear median area. A single row of hairs accoss the tergum of each segment.

Genotype: Ibidocus platalece Denny (8, p. 100).
The type of Denny's species is in the British Museum.
The following species can certainly be referred to the new genus :-I. hians G., I. bisignatus N., I. longiclypeatus Piaget, and I. bimaculatus Mjöb.

The collection of the British Museum contains several undescribed species, including one from that interesting SouthAmerican bird, Aramus scolopaceas.

Neophilopterus and Ibidocus appear to be related rather closely.

Ibidecus platalee Denny.

A single female among some Colpocephulum material from Ibis molucca Cuv. (I. strictipemis)-a straggler, probably, as I. platalere parasitises Platalea lencorodia Limn. The observations which follow were made on specimens kindly lent by Mr. Waterston.

Male Reproductive System.-'This closely resembles that of I. flavus, sp. n., about to be described. The elongate form of the resicula may prove to be a generic character.

Through lack of material, the male copulatory apparatus cannot be satisfactorily described here.

Mouth-parts.-The modified isopogometric apparatus was described and figured in 1913 (9, p. 135, text-fig. 27) for this species under the name Docophorus sphenophorus. The mandibles are very interesting on account of their large size, the absence of basal processes in each mandible, and the unusual development of the curious process shaped like a bird's head on the cuttingedge halfway up between the tip and the base of each mandible (see text-fig. 15). The mandibles of the genus Ibidocus resemble

Text-figure 15.

Ibideecus platalecr. Mandibles. $\times 180$.
L. left. R. right. a. avicularian process.
closely those of the genus Anatocus not only in the avicularian process, in the absence of basal process and quadrangular process, but in the distal extremities consisting each of two apices with one ridged. The species 1. platalere is distinguished by the size and prominence of the avicularian process* and in the large size of the ridges, which in side view give the tip of the mandible longitudinally a serrate appearance. When dissected out and placed face downwards on its cutting surface, the mandible is found to be as deep dorso-ventrally as it is long from base to apex.

[^4]Ibidecus flavus, sp. n.
This species does not form part of the collection on which the report is based, but for the purpose of comparison it is useful to include it here, especially as many specimens-male, female, and larva-are available for study, being part of a valuable consignment of Mallophaga presented to the British Museum by the Hon. N. C. Rothschild.
I. flavus was collected on Platibis flavipes (Gould) (the Yellowbilled Spoonbill of Australia) from "Serpentine, Melbourne," on August 3rd, 1911, the label being endorsed "A. Coles." It is a handsome yellow parasite, recognisable by the shape of the preantennal region of the head, which is longer than in I. platalece and more truncate at the front margin, but not so long as in I. hians and the other members of the long-headed section of the genus. The male genital plate is also a ready means of identifying this form (text-fig. 16).

Text-figure 16.

Ibidocus flavus. Male genital mark. $\times 90$.
External form.-Male. Head (text-fig. 17): Large; preantennal region elongate, each signatural plate long, parallelsided. Line of the temple from the antenna to the anterior lateral angle of the pronotum very convex. Occipital line straight, an exoccipital thickening on each side. Two dark brown, slightly diverging rafters run across the roof of the skull. A small gular plate present, in front gracefully narrowing to an acute apex. A single median occipital apodeme running into the prothorax. Tentorium absent. Thorax: Much narrower than the head, almost parallel-sided and rectangular. Spiracle opens laterally

Proc. Zool. Soc.-1916, No. XLVL.
just beneath the posterior kateral angle. Clavicles present, each rumning as a harow rod from halfway down the lateral margin inwards and downwards to project beyond the hind margin into the metathorax as a broad band, which curves down and then forwards again to be inserted into the transverse acetabular bar hehind the first pair of cose. The nota of both segments are divided by a median longitudinal colourless line. Abdomen: Regularly ovate. The terminal tergite forms a deep semicircular band around the genital opeuing. Ventrally the genital plate with its chretotaxy forms an easily recognisable mark (see textfig. 16).

Text-figure 17.

Ibidecors flavus. Head of male.
Externul form.-Female. As in the male, except for the usnal sexnal differences of the abdomen.

Chatotaxy.-For differentiating species, the chætotaxy in this genus probably will prove of little value, as it is almost identical in the male and female both of this species and of I. platalece (except for the usual sexual differences at the end of the abdomen). For example, on the second segment of the antenna there is one elongate bristle and a sharter one besirle it; the signatural plates are bare dorsally; on the ventral surface is a single bristle in the middle of each plate. On the clypeal band at the base there is one bristle dorsally, one projecting laterally, and one on the ventral surface. At the distal end of the band there are three more bristles similarly arranged. In both sexes of both species, also, there is a bristle on the dorsal surface of the sknil just.
behind the posterior acute angle of each signatural plate, a spine on the corneal surface of each eye, and a spiny hair behind and the same minute spines dotted sparsely over the postantennal dorsal area *. The chætotaxy of the abdomen calls for no special mention.

Text-figure 18.

Ibidcecus flavus. Central nervous system.
Infra.Oes. infra-œesophageal ganglion. Sup.Oes. supra-œesophageal ganglion. $1 s t, 2 n d, 3 r d$. thoracic ganglia. St.N. stomatogastric nerves.

Alimentary Canal.-Mr. Waterston has pointed out to me some minute teeth on the chitinous lining of the pharynx in a Lomobothrion. Similar pharyngeal teeth in Lipeurus ferox were figured without comment in 1913 (9, p. 131, text-fig. 24). I now find similar teeth in the pharynx of other genera, including the present species, in which they are very minute and occur in small rows, each tooth directed backwards. The patch of teeth in the anterior cæcum of the crop is present in jts usual extent; and the

[^5]rest of the alimentary tract requires no detailed description, except perhaps a reference to the swollen base of each Malpighian tube.

Nervous System (text-fig. 18).-The state of preservation forbade any satisfactory dissection of the nervous system. The brain and main ganglia have heen figured by Snorlgrass for Eurymetopus taurus (1, pl. xvi. fig. 7). From this, the central nervous system differs in its general form. The supra-osophageal ganglion is

Text-figure 19.

Ibidccus flavus. Male reproductive system and copulatory apparatus. $\times 90$.
T. testis. $T D$. vas deferens. $B P$. basal plate. E. endomere. P. paramere. Pen. penis. D. ductus. VS. vesicula seminalis.
much broader and the bay in front less deep. The subosophageal is narrower; the first thoracic ganglion is also long and narrow and a little narrower in front than behind. The second or mesothoracic ganglion is roughly triangular in shape, the apex pointing forward. The metathoracic is the largest of the three, and more or less circular in shape. Behind, two extraordinarily large stomato-gastric nerves come off and supply the viscera.

Male Reproductive System (text-fig. 19).-Testes: Relatively
small, the commissure between them weak, so that in dissection the two are commonly separated *. Vesicula seminalis: This is a long narrow sac, with the usual longitudinal median division. The anterior end is a little truncate, broader than it is behind, where it decreases almost to the bore of the issuing ductus. Ejaculatory ampulla absent or only slightly developer.

Male Copulatory Apparatus (text-fig. 19).-Basal plate: Lateral margins well chitinised, parallel-sided except for the posterior third of their length, where the plate broadens out. Posterior margin concave. Parameres: At the base these are broad, thin, and transparent bands which fold in around the stout densely chitinous endomeres. Distally, the parameres curve in towards one another, so as to embrace the tip of the remarkable penis. Beyond the end of the penis they are produced forwards and become more strongly chitinous and brown in colour. Subapically, on the outside margin of each, there is a small directive hair. Endomeres: These remarkable appendages are much shorter than the parameres, strongly chitinised, deep brown in colour, and slightly curved, the convex side of the curve being on the outside of their length. The distal end is enlarged and displays two large ridges, forming distinct cutting-edges, each ridge with a separate apex. Between the distal ends lies the main body of the penis. At the base they articulate with almost the whole articular surface of the posterior lateral angles of the basal plate. Mesosome: The penis is a large bulky piece of chitin, the form of which is relineated in the text-figure. Behind it lies the curiously-shaped piece labelled X. This is clearly endomeral-whether upper or lower, I am not prepared to say. The outline of the central portion of this piece is shaped something like a bowl on a pedestal. There are two long backwardly projecting spines, one on each of the two outwardly curving cornua: and behind, on each lateral angle at the base of the bowl, a short peg-like spine.

Measurements (millimetre-scale).

	Length.		Greatest Breadth.		Length of Antenna.		
	${ }^{*}$.		${ }^{*}$.	9.	Segment.	δ.	9.
Head	$\cdot 965$	$\cdot 96$	$1 \cdot 00$	$1 \cdot 16$	1.	'09	$\cdot 10$
$\left.\begin{array}{l} \text { Pro- } \\ \text { Meta- } \end{array}\right\} \text { thorax ... }$	-60	- 80	$\left\{\begin{array}{l} 65 \\ 90 \end{array}\right.$	$\cdot 74$	2.	'14	$\cdot 17$
				$1 \cdot 0$	3.	-08	$\cdot 07$
Abdomen	$1 \cdot 28$	2×20	130	185	4.	-09	-08
					5.	'095	$\bigcirc 9$
Total	$2 \cdot 845$	3.96			Total ...	-495	$\cdot 51$

* Perhaps due to the condition of the tissues.

The Mouth-parts in the Cienus Ibidœens. ('Text-fig. 20.)
It is necessary to revert once more to the subject of the rharyngeal sclerite (or lyriform organ) referred to on p. 273 of Fart I. and on p. 656 of the present instalment, inasmuch as within this single genus Ibidocus may be found species with these organs modified (as they occur in scattered instances throughout the Order), at least one species in which the parts are normal as in most Mallophaga, and in the species I. flavus a valuable intermediate stage.

Text-figure 20

Tbidcecus flavus. Isopogometric apparatus. $\times 290$.
G. "gland." AC. anterior coruu, PC. posterior cornu, and N. "nucleus" of the lyriform organ.

This isopogometric apparatus, as Armenante (10) called it (on the theory that it was a contrivance for measuring the barbules into equal lengths for cutting) *, was supposed by Snodgrass (1) to be absent in some Mallophaga, such as Lemobothrion, Ancistrona, Nitzschia, Physostomum, Trinoton, and others. In

[^6]1913 (9) I described them as present though modified in these five genera (and in others) and figured them, at the same time expressing the opinion that the apparatus was probably present thronghout the Mallophaga. Up to the present, after many more dissections, there is 110 reason for changing this opinion. Recently (11, p. 393) Mr. Harrison has stated that the lyriform organ is "totally absent" in Ormithobius. But it is still present in this genus, though atrophied and very difficult to dissect out.

Although in such genera as Lamobothrion, Menopon, and Colpocephalum the apparatus shows differences in the lengths of the posterior and anterior cornua (often to a very great extent) and in the shape of the "glands," the characteristic form of lyriform organ and "glands" is preserved and is immerliately recognisable. In the following Amblyceran forms, however, very extensive modifications have been brought about:-Boöpia and Heterodoxus (and probably the whole of the family Boöpidæ), Gyropus (probably all the Gyropidæ), Pseudomenopon, Nitzschia, Trinoton, T'etrophthalmus (belonging to the Menoponidæ), Physostomum, Trimenopon, Ancistrona. Among the Ischnocera, the following. genera must be included:-Ormithobius, Auatocus, most of the genus lbidrecus probably, and the species Trichodectes hemitragi Cummings and Neophilopterus tricolor. Other forms, such as Philopterus pertusus, are indicated by Snodgrass, but these require investigation.

Modification proceeds by way of the gradual disappearance of the "nucleus" or rounded central portion of the lyriform organ, the reduction of the "gland" in size and its ultimate disappearance, and the transformation of "duct" and "glands" into hypopharyngeal sclerites. In text-fig. 20 is shown the lyriform organ of Ibidocus flavus modified, but with the still persistent remains of the " nucleus," consisting of a clear "pinhole" surrounded by a circle of dense chitin. After bifurcating, each branch of the "duct" enters a small, delicate, oval "gland," which lies rather loosely encircled within a plate of chitin; this, behind, tails out in a narrow strip, and in front runs forward as a broad hypopharyngeal plate in outline shaped like a human thumb bent outwards with the "ball" of the thomb facing the corresponding structure on the oppositeside. Between these two plates longitudinally runs a narrow chitinous strip, just as in Lipeurus ferox and others. A sheet of transparent chitin crosses between the two "glands," and in the centre of this may be seen a small circular clear space, possibly a hole.

As compared with this apparatus, that of I. platalece is decidedly more morlified, all sign of "nuclens" having disappeared; while in a species from Aramus scolopacers, apparently undescribed, it is quite normal as in the majority of Mallophaga *.

[^7]
spermatophores in Ibidwens. ('Text-fig. 21.)

Ibidœcus platalere.-The receptaculum seminis is an irregularly shaped sac at the end of an extremely fine chitinous duct which opens by a small aperture throngh the chitinous intima of the genital chamber. The duct is finer than in Neophilopterus incompletus and the calyx is of a very different shape, being bent back around the top of the duct. Inside the sac may be seen the spermatophores-hard, thick-walled follicles containing nests of spermatozoa. In some of these no opening could be discovered.
'Text-figure 21.

Receptaculum seminis of 1. Ibidocus platalece, 2. I. flavus, and 3. Neophilopterus incompletus. $\times 70$.
S. spermatodome. C. calyx. D. duct. N. nest of spermatozoa.

Ibidocus flavus.--The receptaculum resembles that of I. platalese and gives the same suggestion of a hydroid on its stalk. Just within the calyx, however, the canal opens into an atrium, absent in the preceding species. The flask-shaped spermatophores, five in one female and eight in another, lying loose and disposed irregularly, somewhat recall the form of the spermatophore figured by Von Siebold (13) for the Locustid Decticus verrucicorus, but the month is much larger and the neck broader. In each spermatophore in the first specimen was a nest of spermatozoa. In the second they were absent and had probably been discharged.

Cholodkorsky (14 and 15) divides the spermatophores in insects into four distinct types-(1) True spermatophores arising from the sexual organs of the male and facilitating the transference of
spermatozoa into the female organs. Outside the Insecta this is the typical spermatophore well known by zoologists to occur in Urodeles, Cephalopods, Decapods, Myriapods, and elsewhere. Among insects true spermatophores are possessed by Givillus (16), Dytiscus marginalis (17), and others. (2) Spermatodosen or structures which arise in the female sexual organs and serve "zur Dosierung des Samens bei der Befruchtung der abzulegenden Eier." To this group belong the flask- and retort-shaped bodies in the receptaculum seminis of many Locustids, where they were first discovered so long ago as 1791 by Gabriel Brunelli (18), and first accurately described by Carl T. von Siebold in 1845 (13) in Decticus verrucivorus. To this category belong also the spermatophoreshaped structures discovered by Cholodkovsky in Trichoptera (19) and the "spermatophores" of certain Lepidopter"a. (3) Spermatophragmen, or masses of gland secretion, serving as a medium for the transference of the spermatozoa from the male to the female, for the maintenance of the spermatozoa during copulation, or for the closing up of the female genital opening. Examples: some Locustid females and the "Sackchen" of Parnassius. (4) Spermatodesmen* or bundles of spermatozoa united to form feathershaped structures, and so ou.

The so-called spermatophores of the Mallophaga are spermatodose, and were discovered in Lipearus jejumus by Kramer in 1869 (12), in a valuable and careful memoir which has since been neglected by writer's on the Mallophaga as well as by Cholodkovsky, Ballowitz, Blunck, and others engaged in the study of insect spermatophores. Kramer noticed a number of flask-shaped vessels lying loose in the receptaculum semiuis of the female, and as they were too large to permit of their passage up the narrow chitinous duct, Kramer concluded that they arose within the receptaculum, and claimed to have detecterl the necks of halfformed flasks in a special layer of epithelial cells within the receptaculum.

Cholodkovsky's summary of the reasons for thinking that these interesting spermatodose arise within the female is very suggestive, and it is to be hoped that the problem may be satisfactorily elucidated by an examination of further parasites from the Zoological Gardens, well fixed and carefully preserved.

Rather than be classed under the general term spermatophore, the three new terms introduced by Cholodkovsky should be used in contradistinction to it, spermatozengma being substituted for spermatodesmen.

The Philopteri of λ^{\prime} cheviles,

Henry Denny, who, with Nitzsch and Giebel, shares the honour of laying the foundations of our knowledge of the Mallophaga, describes in his remarkable Monograph of British Lice, publisherl in 1840, two species of Philopterus from the Curlew (Numenius arquata (Linn.)), viz. P. testudinarius and P. humeralis. In

[^8]'Les Pédiculines ' (1880, p. 83), Piaget allows P. testudinarius to stand, and after stating that he does not know D. humeralis D., goes on to say " je n'ai jamais rencontré sur cet oisean que le testudinarius dont je joins ici la description." The types of these two species, now in the British Museum, prove them to be perfectly distinct. Both species occur commonly on both the Curlew (Numenius arquata) and the Whimbrel (N. phooopus) ; the characters of P. testudinarius are divergent from the rest of its allies and necessitate the constitution of a new genus.

Text-figure 22.

Philopterus humeralis. Male copulatory apparatus. $\times 120$.
$B P$. basal plate. LE. lower endomere. E. endomere. T. telomere. Pen. penis. I^{P}. paramere.

Philopterus humeralis D. (8, p. 88). (Text-fig. 22.)
One of from Tumenius arquata (Linn.).
Mrale Copulatory Apparatus.-Basal plate: The anterior half
is brown, flat. The posterior half possesses well-marked lateral margins, with a transverse band across the base. Parameres: Elongate cmrved rods, in cross-section circular. At its base each paramere possesses a large circular condyle which is turned inwards like the head of the femur in man. In front it is articulater with the posterior lateral angles of the basal plate, and behind, it lends a surface for attachment to the mesosome. Mesosome : The upper endomere consists of two square " wings"; each "wing" has a straight outer lateral margin and a characteristic " nick" in the posterior margin, after which the margin curves inwards and backwards towards the forker base of the elongate penis. The lower endomere is a small plate lying between the condyles of the parameres. Under the penis is a median elongate piece, bifid at the tip, representing telomeral chitinisations.

Dollabella, gen, nor.

The diagnostic characters are few, but sufficient. They are the shape of the head taken in conjunction with the tergites of the abdomen, which in both sexes stretch right across and are on each side fused with the pleurites. Philopterids living with P. humeralis on Numenius.

Genotype: Dollabella Zestudinarius Denıy.
Dollabella testudinarius D. $(8$, p. 96). (Text-fig. 23.)
Several specimens from Numenius phceopus (Linn.).
Male Reprodactive System.-In proportion to the resicula the testes are very large, ronghly pyriform, nearly as broad as long. The resicula seminalis is elongate, pear-shaped, with a median longitudinal groove. The mather elongate accessory glands, one on each side, lie alongside of it in the posterior portion, and enter the top of the ductus. The ductus ejaculatorius is long and narrow, with several loops.

Male Copulatory Apparatus.-Basal plate: In front for a little more than a thind of its length it is evenly chitinised and of a miform brown colour. Behind, strong lateral margins with a clear membranous area between. At each lower lateral angle the articular surface is oblique, passing downwards from within ontwards. A small angular process projects a little beneath the base of each paramere. Parumeres: Slender, elegantly moulded rods, which a little after halfway turn inwards in a pronounced bend, and then run straight forwards to the distal end. The base of each paramere is characteristic in shape, being roughly quadrilateral, with two sharply defined posterior angles. Halfway down, in the middle of its dorsal surface a minute hair on each paramere; subapically on the outside another minute hair. Mesosome: This includes the endomeres, an upper and a lower, of complex form, the upper one possessing subapically on each of its
two limbs two directive hairs in large alveoli. Between lies the penis, a rod with a large wing-like telomere on each side composed of rather transparent delicate chitin.

Dollabella testudinarius. Male reproductive system and copulatory apparatus. $\times 75$.
T. testis. VS. vesicula seminalis. $A G$. accessory gland. D. ductus. BP. basal plate. SP. median splint. F. paramere. E. endomere. $T l$. telomere. Pen. penis. $V D$. vas deferens.

The Rest of the Pifilopteri.

The species of Philopterus in the collection remaining to be considered are five in number :-

Philopterus communis N. (5, p. 85).
A single \circ in company with Nirmus cyclothorax N. from Passer. domesticus (Linn.).

Philopterls semi-signatus N. (5, p. 80).
'Jwo \& 8 . Host's name not given.
'The difficult question of the Corvine Philopteri is discussed by Waterston (21).

Phlopterus lari Denny (8, p. 89).

Five ㅇ $ㅇ+$ from Numenius arquata (Linn.). A straggler from Gulls.

The male copulatory apparatus is figured by Snodgrass (1, pl. xiv. fig. 8).

Pellopterus leontodon N. (5, p. 90).
A single male from Psaroglossa spiloptera (Vigors).
A common parasite on Starlings, occurring in several different forms ; probably a new genus should be established.

Text-figure 24.

Philopterus acanthus. Male copulatory apparatus. $\times 150$. $B P$. basal plate. LE. lower endomere. P. paramere. E. endomere, Pen. penis. T. telomere.

Philopterus acanthus C. (5, p. 101). (Text-fig. 24.)
Two $o f$ in company with Airmus ochropygus on Heematopus ostralegus (Linn.).

I am able to describe the male copulatory apparatus from a preparation kindly lent me by Mr. Waterston. This belongs to much the same type as that in P. hmmeralis.

Male Copulatory Apparatus.-Basal plate: The characteristic feature is its small width in proportion to the dimensions of the parameres and mesosome, which are attached to it. Basal transverse band very convex. Parameres: Large powerful rods, with large circular condyles working orer the tiny articular surface offered by the posterior lateral angles of the basal plate. Distally they bend in somewhat towards one another. Subapically a minute hair. Mesosome: There are two endomeres, a lower and an upper, the former being a small deeply bifid plate, each limb of the fork running out behind into an attemated tip. The upper endomere has two wings, narrower at the distal end than in P. humeralis, and here solely consisting of the lateral tooth or notch pointing outwards. The penis is a delicate rod with a large bulbous base (hypomere) ; above lie the "winged" telomeres, which together look like a javelin's head.

A comparison between text-figures $22,23 \& 24$ clearly indicates the homologies between the parts in the three species.

Family Lifeuride.

The Lipeuri of Struthious Birds.

Degeeriella asymmetrica N . is found on the Emu (Dromaus novce-hollandice (Lath.)), Lipeurus asymmetricus P. on two species of Rhea (Pterocnemia pennata (D'Orb.) and Rhea macrorhyncha Scl.), Lipeurus quadrimaculatus P. on Struthio camelus Linn. and Rlea americana, Lipeurus latus P. on R. americana. There can be but little doubt that these four species are related to one another and should be grouped together. Snbsequent research and the rediscovery of Piaget's L. latus will probably result in the establishment of three new genera placed together in a new subfamily.

Harrison (22) has alrearly suggested that D. asymmetrica, L. asymmetricus, and L. quadrimaculatus should be regarded as congeneric. From the new genus established below to include L. asymmetricus and L.quadrimaculatus, I have omitted D. asymmetrica, as in my opinion it should stand in a genus by itself. It is a curious and significant fact that in three of these species parasitising Struthions birds the margin of the anterior part of the head is from some canse by no means evident asymmetrically developed. The asymmetry in the anterior incrassation of the head is least developed in L. quadrimaculatus, while in the larva of this species, as well as in the larva of L. cesymmetricus, the asymmetry is absent even in Stage II. That D. asymmetrica, in which the adult asymmetry is most developed, the whole of the
preantennal region being bent over on itself to form a longitudinal channel, is a derivative of the other two species seems clear from the observation made by Harrison that the larve of D. asymmetrica possess asymmetrical hearls of "a precisely similar structure" to that found in the adults of the other two.

A great deal more collecting and investigation are necessary before any satisfactory conclusions can be drawn upon the relationship of the Mallophaga parasites to their Struthious hosts.

Strutholipeurds, gen. nov.

Lipeuroid: antemxe sexually dimorphic. Incrassations of anterior margin of head placed asymmetrically. Left mandible with an enormous basal process almost as large as the mandible itself. In the thorax clavicles present as thin splints running inwards and backwards from the antero-lateral angles to join a band which goes vertically downwards to be inserted into the transverse acetabnlar bax. Abdomen with thinly chitinised transverse tergites. 'Two transverse rows of fairly long silky hairs on each tergite. Hairs at the sides numerous and fairly long. Male copulatory apparatus characteristic.

Genotype: Struthiolipeurus asymmetricus Piaget (23, p. 54).
The genus to include S. quadrimaculatus P. (3, p. 298).
Struthlolipeurus askmetricus P. (Text-fig. 25.)
I collected several specimens of this species personally on a live Rhea in the Gardens.

Male Copulatory Apparatus.-Basal plate: Dorsally troughshaperl, with a longitudinal merlian keel. At the posterior end the sides of the trough become steep, and a bridge runs across from side to side in the form of a fairly narrow transverse band, from the middle third of which a parallel-sided plate runs forward between the parameres, ending in a straight truncate margin, to which the upper endomeres are attached. Beneath this transverse hand is another running across the floor of the trough from side to side. Like the dorsal one this sends forward a median piece between the parameres, and near the end of it the penis arises. The posterior lateral angles of the basal plate are much produced, deep dorso-ventrally, and square. Parameres: long tapering roils, the apex curiously formed (see text-fig. 25, P). Mesosome: Each upper endomere is roughly triangular, being broad at the base and narrowing towards the tip, where it is slightly decurved. The piece may best be likened to the rhamphotheca of some bird of prey when macerated off the skull; it is actually double, being bent upon itself, the two leaves gaping wide enough to admit of the introduction of the dissecting-needle. In this way each upper endomere "gapes" outwards. The lower endomeres take origin further back, one on each side of the base of the
penis. They are slender and wedge-shaped, rather long. The penis is a long, narrow, elongate rod, with a somewhat swollen base, which lies almost buried between the dorsal and the ventral median processes of the basal plate.

Text-figure 25.

Struthiolipeurus asymmetricus. Male copulatory apparatus. $\times 140$.
$B P$. basal plate. $M K$. median keel. TB. transverse band. MP. median piece.
$P e n$. penis. LE. lower endomere, P. paramere. $U E$. upper endomere.

The Rest of the Lifpeuri.

Lipeurus subsignatus Giebel (5, p. 232).
Several specimens, including a male, from Phœonicopterus roseus Pall.

Lipeurus Jejunus Nitzsch (5, p. 240). (Text-fig. 26.)
Males, females, and larvæ from Branta leucopsis (Bechst.).
Male Reproductive System.-This was carefully figured and described by Kramer as long ago as 1869 in the 'Zeitschrift für wissenschaftliche Zoologie' (12). Testes and vas deferens as usual. The vesicula seminalis is an elongate double-chambered sac, the median partition indicated externally by a longitudinal groove.

Male Copulatory Apparatus.-Basal plate: Rather long, narrow, of uniform thinness, the lateral margins indistinct, and the colour dull greyish. Mesosome: Attached to the posterior margin of the basal plate is a large, broad, trowel-shaped plate-the mesosome. When the apparatus is withdrawn, as shown in the figure, the parameres, slender rods shorter than the mesosome, lie dorsally

Text-figure 26.

Lipeurus jejunus. Male copulatory apparatus. $\times 130$.
$B P$. basal plate. P. paramere. $E P$. endomeral plate. P en. penis.
and inside the lateral margins of the mesosomal plate. When the apparatus is in action, however, the base of the mesosome swells up and broadens out, carrying the parameres with it, so that the latter come to lie laterally in their normal position. The penis is a perfectly straight elongate tube, with an aperture at its tip and with a forked base.

Lipeurus heterogrammicus N. (5, p. 220).
Plenty of material of this minute species was sent, collected on Caccabis chukar Gray.

Proc. Zool. Soc.-1916, No. XLVII.

L'peurus antilogus N. (5, p. 223).
Males, females, and larvæ in numbers from Eupolotis eductrdsi (Gray \& Hardw.).

The specimens were identified from Piaget's description and figure (3, p. 374, pl. xxx. fig. 3), with which, however, they did not entirely agree. After examination of anthentic L. artilogus the Society's specimens may emerge as a new form.

Lipedrus variabilis N. (5, p. 219).
Several specimens of both sexes from Plasianus scintillans Goull.

This is a difficult species, of which several varieties have been described. All the material badly needs overbauling and dissection in conjunction with allied species.

Lipeurus burnetti Packard (24). (Text-fig. 27.)
Two δ ot and 4 of \circ fromi Polyplectron chinguis (Miill.).
The description which follows is incomplete, as the material was insufficient to settle the question of the preputial sac, which is therefore omitterl.

Male Copulatory Apparatus.-Basal plate: Unusually broad, with very narrow, lateral, marginal bands. Anterior margin very convex. Parameres: Quite short and inwardly chrved. Eudomeral plate: 'This is much longer than the parameres and at the base almost as broad as the basal plate. Behind, it sends forward a narrower parallel-sided portion shaped something like a duck's bill (see text-fig. 27). Note the peculiar sculpturing of the inner surface of the paramere.

Lipeurus secretarius G. (5, p. 213).
Many specimens from Serpentarius serpentarius (Miller).
This species belongs to a well-defined group of large haudsome Lipeurids infesting birds of prey and characterised by the four or six curious, more or less circular incrassations on the front margin of the head. They undoubtedly form the material for a new generic grouping.

Lipeurus forficulatus N. (5, p. 238).
A goodly number of specimens of both sexes and larve from the Red-backed Pelican (Pelecamus rufescens Gmel.).

This species, readily distinguished from L. bifasciatus P . by the shape of the antenne in the male, is found on P. onocrotalus Gmel. The present specimens were paler in colour than is usual in this species.

Larve.-'Two stages, probably I. and II., have been figured by Kellogg without any comment (25). The chætotaxy of the abolomen in Stage I. (?) shows the common and perhaps primitive arrangement of two hairs on each dorsum in the middle field. In

Stage II. (?), the only stage included in this collection, there are two hairs on the dorsum of each segment, two on each pleura (very short on segments I. and II.), and on segments VI. and VII. a long hair behind each spiracle. On the sterna there are four hairs in each segment excepting on the last two segments, where there are only two. As compared with Stage I. (?) there

Text-figure 27.

Lipeurus burmetti. Male copulatory apparatus. $\times 180$.
$B P$. basal plate. P. paramere. EP. endomeral plate. Note the sculpturing of the paramere.
is a slight difference in the grouping of the hairs on each side of the hind margin of the metanotum.

Male Reproductive System (text-fig. 28).-The testes and vasa deferentia require no special mention. The rest of the parts are
complex in structure, consisting of an oval end-sac-the true vesicula seminalis-which leads by a narrow neck into a second well-defined portion. for convenience of description called the middle-sac. Further, elongate reservoirs, elegantly flask-shaped,

Text-figure 28.

Lipeurus forficulatus. Male reproductive system and copulatory apparatus. $\times 105$.
a. seen from above; b. seen from the side. Testes not shown.
$B P$. basal plate. P. fused parameres. D. dnctus. $P l$. strip of narrow chitin along ventral surface. S. extrusible sac. R. reservoir. E. end-sac of vesicula seminalis. M. middle-sac. $A G$. accessory gland. Pa. cone-shaped papilla. V. vas deferens.

When in situ the vesicula and associated parts lie much further forward in the body-cavity in front of the basal plate, and the sac when extended in copnlation curls over the back of the abdomen.
lie, one on each side of the middle-sac, and enter by a narrow neck into the narrow section between the end-sac and middlesac. . The text-figure shows the connections at this point with the vas deferens. The ductus ejaculatorits for a considerable portion of its course on leaving the middle-sac is large and glandular and almost as broad as the middle-sac itself. The narrow canal between the latter and the ductus projects into the lumen of the ductus as a minute cone-shaped protuberance. The broad upper part of the ductus, after two bends, giving the tube an S-shaped form, narrows into a small canal of several coils, which enters lower down into the upper part of the retracted preputial sac.

Text-figure 29.

Lipeurus, forficulatus, δ. Transverse section through the abdomen at the level of the middle-sac of the vesicula. (Diagrammatic.)
$R t$. rectum. T. testis. M. mnscles. FC. fat cells. $V D$. vas deferens. R. reservoir. MS. middle-sac.

Sections of these parts reveal some important points (see textfigs. $29 \& 30$). Externally the end-sac is marked by a median longitudinal groove. In cross-section the mid-sac, as in the vesicula seminalis of other insects, is seen to be donble, consisting of two distinct tubes closely applied one to the other. Similarly, the middle-sac is also double. Whereas the end-sac contains sperm, the two "reservoirs," the middle-sac, and the two minute vesicles, one on each side at the lower end of the latter, contain a coagulable white secretion, which possibly plays the part of spermatophragmen, serving for the maintenance of the spermatozoa during copulation.

The walls of the end-sac are fairly thin. Those of the middle-
sac are thicker, the cells being of varying lengths and their ends projecting inregularly into the lumen. The walls of the flaskshaped reservoir are very thin, consisting of a clear hyaline external membrane and an inner epithelium of short cells. The walls of the upper portion of the ductus ejaculatorius are very thick, consisting of extremely high cells, the shape of which is not clear in the preparations on account of unsatisfactory fixation. For the same reason the histology of other parts remains obscure.

Lipeurus forficulatus, ठ' Transverse section through tle ahdomen, behind the middle-sac of the vesicula. (Diagrammatic.)
R. rectum. D. dectus. Res. reservoir (lower end). DV.M. dorso-ventral muscles, FC. fat-cells.

Male Copulatory Apparatus (text-fig. 28).-The copnlatory apparatus belongs to the simple type, consisting of basal plate and parameres and an extrusible membranous sac (sce Part I., p. 257). Fortmately in the collection were two males with the sac extruded, and, as usual, when in this condition turned upwards and backwards over the terminal segments of the abdomen. A detailed account is therefore included of the sac when extruded and when retracted, with some remarks upon the mechanism of extrusion and retraction.

The basal plate is rather long and narrow, of a dull grey colour, the lateral margins a little concave. The parameres at their distal ends are fused with one another. The text-figure shows that the fused parameres are dorsal to the sac which shoots outwards and upwards from under the chitinons arch formed by the parameres. The sac proximally possesses two characteristic transverse rolls caused by two deep furrows. Distally it is studded with a number of minute denticles and its opening is
subterminal on the dorsal surface. From between the parameres and continuons at that point with the basitl plate is a small endomeral plate continued backwards as a long, narrow, thick, parallel-sided, chitinous strip which supports the sac on its lower side along the middle line. The ductus can be seen throngly the wall of the sac running backwards into the abdomen, where it lies on the dorsal side of the hamal plate.

Lipeurus forficulatus, δ. Transerse section through the abdomen showing the copulatory sac lying retracted within the body-cavity above the basal plate. (Diagrammatic.)
R. rectum. T. trachea. S. sac. PL. narrow chitinons strip on ventral surface of sac. Mr. muncles. FC. fat-cells. BP. basal plate, showing the rift.

The Apparatus when retracted.-During retraction the sac is continuously invaginated until the distal end with its denticles comes to lie farthest forward within the abdominal cavity a little anterior to the fore end of the basal plate. The thick endomeral strip on its lower wall, of course, curls upwarls and tavels in with the rest, so as to form in the retracted state an enigmatic loop difficult to interpret until an extruded sac is examined. In cross-section, therefore, the endomeral strip forms the lower wall of the inner tube (see text-fig. 32). A similar endomeral loop with a similar history was describerl in Part I., p. 271 , for Trichodectes latus. The diagram should make the relation of the parts quite clear.

It should be clearly understood that the parameres are at no place rods or appendages discrete from the sac. At their distal end (text-fig. 33) a membrane crosses between them dorsally and another membrane crosses ventially. If the parameres became shorter these two membranes would become continnous with one another and with the dorsal wall of the outer tube, and if, finally, they disappeared we should have a simple exsertile tube. Sections anywhere across the length of the parameres all show
them to he local chitinisations one on each side of a membranons tube-the outer tube. In text-fig. 32 a section is shown of this outer tube contained within the genital chamber, and the hasal plate and parameres are seen merely as local thickening in the continuous wall of the sac.

Text-figure 32.

Lipeurus finficulatus, ठ. Transverse section through the genital chamber, with the copulatory apparatus retracted. (Diagrammatic.)
R. rectum. M. muscles. $P L$. chitinons strip on rentral surface of the sac. $B P$. basal plate betweeu the base of the parameres (P.). GC. genital chamber.

$$
\text { Text-figure } 33 .
$$

Liperrus forficulatus, 3. Longitudinal section throngh the end of the abdomen. (I)iagram.)
R. rectum. GC. genital cavity. S. sac. P. paramere. BP. basal plate.

Now, if reference be again made to the diagram (text-fig. 33) it is evident that the dorsal sector of the genital chamber ends much sooner than the ventral. Reading the sections forwards
establishes beyond doubt the interesting character of the basal plate. The sole remaining ventral part of the genital chamber becomes smaller and smaller until it is no more than a narrow cleft below the basal plate. Next, its lower wall becomes chitinous and is approximated to the basal plate, which is for the rest of its course a circle of chitin squashed perfectly flat into a plate with only a narrow rift between (text-fig. 31).

The interest in this observation centres in the fact that it explains the nature of the basal plate. At the base (near the parameres) this begins as an ordinary squamiform apodeme on the lower wall of the sac within the genital chamber. It runs back ($i . e$. in the direction of the head) as an ordinary tubular apodeme formed as an invagination of the ectoderm in the lower part of the genital chamber. This "tube" is compressed into a flat plate and its lumen reduced to a thin rift-continuous with the genital chamber.

Text-igure 34.

Lipeurus forficulatus, ठ . Cross-section though the extruded sac just behind the opening.
D. ductus. M. muscle mass. Pl. narrow chitinous strip on ventral surface.
Extrusion and Retraction.-On the ventral surface of the basal plate there is a series of longitudinal muscles which arise in frout from the anterior portion of the basal plate and are inserted behind into the terminal sternite of the abdomen, serving to thrust the plate forward and expose the parameres through the terminal abdominal opening. 'Text-fig. $28 a$ shows that the parameres along their dorsal margin curve in somewhat. Underneath this overhanging ledge small muscle-fibres run back along the length of the parameres and are attached to the base of the basal plate, doubtless serving to draw the tip of the fused parameres upwards in a dorsal direction, which is its usual position when in
copulation. On each side of the basal plate is a large-bellied muscle arising from an ablominal sternite some way for ward and inserted by a delicate tendon into the lower end of the basal phate. These are retractor muscles, withrlawing the apparatus within the body after copulation. The continnous invagination of the sac is brought about by the contraction of a great many small muscles aring from the dorsal surface of the basal plate and inserted successively along the walls of the sac. They are particularly numerous above the ductus at the distal end of the sac, being inserted just behind the opeming (text-fig. 34).

Extrusion of the sac is probably catused by blood-pressure upon contration of the powerful dorso-ventral abdominal muscles segmentally arranged.

The above is not offered as a complete account of the mechanism of this complicated apparatus. The manifest lacumae in the description must be filled in only after a great deal more study of the parts.

Text-figure 35.

Lipeurus forficulatus, $\boldsymbol{\delta}$. Transverse section through the head behind the antennce. (Diagrammatic.)

CT. chitinons tendon for attachment of mandibular muscles (MI). P. pharynx. T. trachea. Sub.O.G. subœesopbageal ganglion. F. eye.

Mouth-parts.-Labium: The labial sclerite is present merely as a narrow transrerse band near the anterior margin. Isopogometric Apparatus: Lyriform organ without posterior cornna. Anterior corma are broad and flat, convex on the outer margin, and in length equal to that of the "nuclens" itself; from each side a chitinous bar runs up the wall of the pharynx, which is further supported dorsally hy a short merlian longiturlinal splint. Behind the lyriform organ the chitinous intima of the pharynx lears a number of minnte teeth. As in Lipeurus jerox (9, textfig. 24) there is a compound hypopharynx consisting of a narrow, short, median piece, and on each side a longer rectangular strip. The pharynx (see text-fir. 35) is supplied with numerous small muscles-circular, longitudinal, and transverse. The latter are developed further forward, and consequently do not appear in the
text-figure. There are two pairs, one running from the ventral and the other from the dorsal side of the skull.

Genus Pectinopygus Mjöberg.

Pectinopygus pullatus Nitzsch (5, p. 236).
From time to time a considerable anount of material of this species from Sula bassana (Linn.) and from the Cape Gannet (Šula capensis (Licht.)) was sent in.

Text-figure 36.

Pectinopygus pullatus, δ^{\star}. 1. reproductive system. 2. copulatory apparatus. $\times 90$. , $2 a$ paramere enlarged. $\times 270$. Testes and vasa deferentia not shown.

VS. vesicula seminalis. a.b. c. lobes. D. ductus. BP. basal plate. P. paranere. R. retinaculum. $1-5$. sclerites on the sac.

Male Reproductive System (text-fig. 36).-The vesicula seminalis is complex. It consists of a large, swollen, two-chambered sac
of somewhat irregular contow and outline. At the anterior end are two small, closely mited offishoots from the central chambers, and at the posterior end, where the vesicula joins the ductus, are two pairs of accessory lobes each attached to the vesicula by scaucely any appreciable neck or constriction. The first pair of lobes are quite small and lie postero-ventrally. The second pair run backwards sicle by side above the issuing ductus, and are nearly half as long as the vesicula and together almost as broad. The ductus ejaculatorius is broad at its upper end and rather short. About midway townrds the copulatory apparatus there is a small bend where a pair of small glanels are attacherl.

Male Copulatory Apparatus.-Thronghont, the Mallophaga, as indeed in Insects generally, the structure of the male apparatus for copulation displays a remarkable variety. In the Mallophaga the strangest condition is found in Pectinopygus pullatus (see text-fig. 36). Mjöberg (6, p. 246. fig. 139), who established the genas, in purporting to describe and figure the apparatus describes only the basal plate, parameres, and ductus. The whole long extrusible sac, with its complex chitinisations, is omitted-swept away in dissection possibly in mistake for the rectmo or rectal feecal matter. A propos of the sac, Mjöberg states that, although present, it is " jedoch nicht gut entwickelt." And of the ductus ejaculatorius: "Er zeigt in der Innerwand ein in einer Spirale verlaufendes Chitinband." But the ductus contains no snch spiral band, and as it is difficnlt to suppose Mjöberg mistook the extrusible "preputial sac" for the ductus, there may be here a question of a distinct but unrecognised species.

Basal plate.-This is long and narrow, with a longitudinal median keel upon its lower surface. The two peculiar processes (P), which probably represent parameres, do not articulate with the basal plate, but are attached to its dorsal surface along the length of the whole "stalk" or umpectinated portion. The distal end is band-like and curves outwards. On the inner surface of each are about thirteen denticles like sessile buds on a stalk, graduated in size from the base to the tip. Below and quite continuous with the basal plate lies an endomeral plate, formed of a rather clear chitin, the upper surface presenting a tesselated appearance. In regard to the "preputial sac," the text-figure lays no claim to a representation of this in the natural position. Unfortunately no male specimen was obtained with the sac extruded. Consequently the remarkable sclerites $1,2,3$, 4 and 5 are shown lying in no very intelligible position. However, the shape of the pieces is seen together with the structure of the large "retinacular comb" at the distal end, recalling a similar structure figmed for Auatucus. The "comb" in Pectinopygus consists of a row of about nine elongate bands. Each band at the base has square angles, is fairly broad and parallel-sided for a short distance up before it divides into two, forming a fork with two elongate prongs. All the nine forks are really one
continnous piece, the divisions between being filled by a sort of amalgam of thin transparent chitin.

The whole of these pieces, as well as the basal plate and parameres, which in their ensemble Berlese conveniently collects under the name Perifallo (26), are, it must be remembered, simply chitinous plaques developed upon the ontside tube of the apparatus. In Pectinopygus these are remarkable from their miscellaneous character, whereas in other Mallophaga the mesosomal parts are usually capable of ready classification into the endomeres and telomeres and penis.

Literature.

(1) Snodqrass, R. E.-Occas. Pap. Cal. Acad. Sci. vi. 1899.
(2) Harrison, L.-Parasitology, viii. No. 3, Jan. 1916, p. 338.
(3) Piaget, E.-Les Pédiculines. Leide, 1880.
(4) Kellogg, V. L.-SSience, n. s., xxxrii. No. 943, 1913, p. 154.
(5) Giebel, C. G.-Insecta Epizoa. Leipzig, 1874.
(6) Mröberg, E.-Arkiv för Zoologi, Stockholm, Bd. 61, No. 13, 1910.
(7) Cummings, B. F.-Aun. Mag. Nat. Hist., Jan. 1916.
(8) Denny, H.-Monographia Anoplurornm Britanniæ. London, 1842.
(9) Cummings, B. F.-Proc. Zool. Soc. 1913.
(10) Armenante, E.-Boll. Soc. Nat, in Napoli, xxiv., ii. (vol. iv. Anno xxiv.), 1911.
(11) Harrison, L.-Parasitology, vii. No. 4, March 1915.
(12) Kramer, P.-Zeit. wiss. Zool. Bd. 19, 1869, p. 452.
(13) Von Siebold, C. T.-Nov. Act. Acad. Cæs. Leop.-Car. Nat. Cur. vol. xxi. Part 1, 1845, p. 249.
(14) Cholodkovsky, N.-Trav. Soc. Imp. des Nat. de St. Pétersbourg, vol. xli. Nos. 2-3, 1910.
(15) Cholodкovsky, N.-Zool. Anz. Bd. 41, 1913, p. 615.
(16) Lespés, C.-Annales Sci. Nat. (Zoologie) (4) tom. iii. 1855, p. 366.
(17) Beunck, H.-Zeit. wiss. Zool. Bd. 102, 1912, p. 169.
(18) Brunelli, G.---De Bononiensi Scientiarum et Artium Instituto atque Academia Commentarii. Tom. vii. 1791. Opuscula Gabrielis Brunellii de Losustarum Anatone, p. 203.
(19) Cholodkovsky, N.-Zool. Anz. Bd. 42, 1913 , p. 531.
(20) Ballowitz E.-Zeit. wiss. Zool. Brl. 50, 1890, p. 317.
(21) Waters ron, J. - Trans. Perths. Soc. Nat. Sc. vol. v. pt. 4, 1912, p. 126.
(22) Harrison, L.-Austral. Zool. vol. i. pt. i. 1914, p. 3.
(23) Piaget, E.-Les Pédiculines. Supplement, 1885, p. 54.
(24) Packard, A. S.-Amer. Natur. vol. iv. 1870 , p. 83.
(25) Kellogg, V. L.-Proc. Cal. Acad. Sci. (2) vol. vi. 1896, p. 129, pl. ix. figs. 5 \& 6.
(26) Berlese, A.-Gli Insetti. Milan, vol. i. 1906, p. 312.

[^0]: * Part I. appeared in the P. Z. S. 1916, p. 253.
 + Published by permission of the Trustees and communicated by the Secretart. [Owing to the illness of Mr. Cnmmings, the final proofs of this paper have been corrected, and the magnifications of the figures worked out, by the Rev. James Waterston, B.D., B.Sc., of the Imperial Bureau of Entomology.-Editor.]

[^1]: * [The parentheses around the names of authors placed after scientific names in this paper are used in accordance with Article 23 of the International Rnles of Nomenclature (Prec. 7th Int. Cong. Boston, 1907, p. 44 (1912)).—Editor.]

[^2]: * The whole of the dorsal chetotaxy of the head is a generic chazacter.

[^3]: * It may exist in other species and yet escape detection, if the chitin be hyaline and trausparent.

[^4]: ** (f) avicularia in the Polyzua.

[^5]: * It is likely that the chretotaxy, at least of the head, just as in Anatcecus, will prove to conform to the same plan throughout the whole genus. It is the same in two other species (umamed) which I have examined, naking four in all.

[^6]: * The fact that a similar apparatus is present in the Psocidæ, which do not feed on feathers, does not necessarily disprove Armenante's theory, as its present function may be a new one, involving the adaptation of old parts. It is certainly difficult to believe that the so-called "glands" (now apparently wholly chitinous) were not once glamhtar, which they may still he m part.

[^7]: * Mr. Harrison informs me that he possesses a species of Ibidocus from an Australian hust with a normal lyriform organ.

[^8]: * This is the spermatozengma of Ballowitz (20).

